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ABSTRACT 

/.36@ 
The equations of forced flexural motion are derived for a rocket- 

boosted vehicle controlled by vectored thrust. Planar motion is assumed. 
Motions involved in the system include flexural motion of the vehicle, 
fuel slosh, and rotation of the engine nozzle. The buckling effects of 
the tangential thrust component, and the longitudinal inertial and 
aerodynamic forces are ignored. The aerodynamic forces are derived 
from momentum theory. Forcing conditions which have been con- 
sidered are those resulting from atmospheric motion, a sudden control 
change, or an initial disturbance. 

1. INTRODUCTION 

This Memorandum presents a derivation of the equa- 
tions of forced flexural motion of a rocket-boosted vehicle 
controlled by vectored thrust. The intent in this Memo- 
randum is to present the development of the equations 
for forced motion of a rocket in a comprehensive deriva- 
tion that does not include the detail that can be obtained 
from other references (e.g., Ref. 1, 2, 3, 4). 

The vehicle is assumed to have no roll motion and to 
have isotropic inertial and aerodynamic characteristics 
around any lateral axis. With these assumptions, consid- 
eration of the three-dimensional motion of the vehicle is 
unnecessary. In this Memorandum, it is assumed that the 
motion of the vehicle is confined to a vertical plane. 

It is assumed that the vehicle structure may be repre- 
sented by an elastic beam having bending and shearing 
flexibility. Sloshing of fuel in the fuel tanks is represented 
by the motion of a simple pendulum attached to the 
beam (Ref. 5 ) .  The engine nozzle may be rotated by a 
command from the control system. Although the physical 
parameters of the vehicle and of the atmosphere are 
time-varying, it is considered here that they vary slowly 

compared with the motion being studied. Thus, it will 
be assumed that the physical parameters are constant, 
with the result that the equations of motion will have 
constant coefficients. 

In the analysis that follows, the properties of the 
natural modes of flexural vibration of the beam with 
slosh pendulum and engine nozzle locked are developed. 
Expressions for the kinetic energy and elastic potential 
energy of the system are written considering a general 
planar motion involving the motion in the natural flexural 
modes, the rigid-body motion of the system, and the 
motion of the slosh pendulum and engine nozzle. Then, 
forcing conditions resulting from atmospheric motion, a 
sudden engine nozzle rotation, or an initial disturbance 
are expressed as generalized forces corresponding to the 
system coordinates, and the equations of motion for the 
system are written using Lagrange’s equations. The 
momentum method is used in developing the expressions 
for the aerodynamic forces involved in the problem (Ref. 
6, pp. 418420). Finally, the equations of forced motion 
are written in a nondimensional form. 
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II. PROPERTIES O F  THE NATURAL FLEXURAL MODES 

The system to be analyzed is composed of an elastic 
beam, a slosh pendulum, and an engine nozzle. The 
beam has bending and shear flexibility. The slosh pen- 
dulum and nozzle are locked to the beam and are required 
to have the bending slope of the beam at the attachment 
points. The deflected system is shown in Fig. 1. The 
characteristic of the system and its motion are defined 
as follows: 

EZ = flexural rigidity of the beam 

IN = moment of inertia of nozzle around 
hinge point 

Is = C)n& = moment of inertia of slosh pen- 
dulum around hinge point 

K’AG = shear rigidity of the beam 

lN = distance from hinge point to center 

Is = length of slosh pendulum 

of mass of nozzle 

(2nN = mass of nozzle 

c)ns = mass of slosh pendulum 

r = radius of gyration of cross section of 
the beam 

WB = bending deflection of beam 

w, = shear deflection of beam 

w = r(jB + W, = total deflection of beam 

p = mass per unit length of the beam 

Differentiation with respect to time and to position r 
will be denoted by a dot and a prime respectively. 

Consider the equilibrium of a differential element of 
the beam as shown in Fig. 2, which defines the positive 
sense of the bending moment M and the shear force S 
in the beam. Also shown are the inertia force and moment 
acting on the element. The bending moment and shear 
force are related to the displacements by 

M = EIwg 

S = k‘AGwl, 

Equilibrium of the element requires that the sum of 
forces and the sum of moments each vanish. Making use 

&NOZZLE 

+ 

PENDULUM 
SLOSH 

b x  

PENDULUM 

z 

Fig. 1. Deflected elastic system-slosh pendulum 
and nozzle locked to beam 

0 
dx 

I I m x  

p r t  wk dx S +  fi dx 
a x  

z 

Fig. 2. Free-body diagram-differential element of beam 

of the preceding equations, the two equations of motion 
of the beam result: 

(Elwk’)’ + k‘AGwg - prxaB = 0 

(k’AGwl,)’ - p 6  = 0 

The equations of motion above apply throughout the 
beam, except at the points of attachment of the slosh 
pendulum and the nozzle. 

Consider the inertia force and moment transmitted 
to the beam by the slosh pendulum. Figure 3 shows the 
forces and moments acting on the slosh pendulum. Equi- 
librium requires that 

The force and moment are applied in an opposite sense 
to the beam. Similarly, it may be shown that the force 
and moment applied to the beam by the nozzle are 

2 
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Fig. 3. Free-body diagram-slosh pendulum 

The equations of motion represent the rate of change 
of the bending moment and the shear force along the 
beam. The rate of change of the bending moment and 
the shear force resulting from the slosh pendulum and 
nozzle may be written using the above equations and the 
concept of the Dirac delta function. If these results are 
added to the equations of motion, a set of equations 
may be written which apply throughout the beam, as 
follows: 

(1) (Elwy)‘  + k’AGwQ - p2GL 
+ (QnslsG - Is&) 6 (x - x s )  

+ (M?JSG - I,$;) s (x - XN) = 0 

-on?,(;;- l N i 3 ~ ) s ( z - x , ) = 0  

(k’AGw[,)‘ - pG - \ms (G - l,$&) 6 (X - ~ s )  

The quantities 8 are the delta functions. 

It is well known that the solutions of the equations 
of motion will result in an infinite set of eigenvalues or 
natural frequencies Q, and a corresponding set of eigen- 
functions or mode shapes. The mode shapes are com- 
pletely described by the total displacement + and the 
bending slope +. The equations of motion, Eq. (l), will 
be used next to derive some useful properties of the 
natural modes. 

A motion of unit amplitude in the ith mode may be 
represented by 

w = +; eio,t 
w[, = (4: - q i )  eiwst 
W L  2 ,!,i eiw,t 

This motion must satisfy the equations of motion, Eq. (l), 
leading to 

Multiplying Eq. (2) by qj  and + j ,  respectively, adding 
them together, and integrating over the beam results in 

+ [Qns+i (xs) + j  (xs) - WslSJli 

- Wsldi (xs) + j  (xs)+ Is+; ( ~ 8 )  + j  ( d l  
+ [(I“+; (xN) + j  (xN) - o n 2 J N + i  (xN) + j  (zN) 

- c n ~ ~ x + i  (XN) +j ( X N )  + (XN) + j  ( X N ) ] }  

+ j  ( ~ 8 )  

making use of the fact that the bending moment and 
shear force vanish at the ends of the beam. Similarly, a 
second equation may be written with the subscripts i 
and i interchanged. Subtracting the second equation from 
the first leads to 

3 
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For the case i = i, define 

The quantity c)lzi will be referred to as the generalized 
mass of the ith mode. 

Consider Eq. (3) again. If i # j ,  the right-hand side of 
this equation vanishes, resulting in the second orthog- 
onality relationship: 

for i # i 

For i = 1, making use of Eq. (5) ,  Eq. (3) may be rewritten 
as follows: 

Equations (6) and (7) will be useful later in writing the 
elastic potential energy of the system. 

An additional useful relation may be obtained from 
Eq. (2). Multiplying the second equation of Eq. (2) by x, 
adding the result to the first equation of Eq. (2), and 
integrating over the beam leads to 

Since oi # 0 for any of the elastic modes, the term in 
the braces must vanish, resulting in 

The meaning of Eq. (8) is that the product of inertia of 
each of the modes with respect to the x, z axes is zero, and 
that the x, z axes are the principal axes. 

Next, integrate the second equation of Eq. (2) over 
the beam, which yields 

Since oi # 0 for any of the elastic modes, the term in 
the braces must vanish, leading to 

The meaning of Eq. (9) is that the center of mass of 
each of the modes lies on the x axis. 

4 
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111. KINETIC AND POTENTIAL ENERGY 

SLOSH 
PENDULUM 

A. Frames of Reference 

Consider the motion of the system, allowing the slosh 
pendulum and nozzle to move relative to the beam. The 
flexural motion of the beam and the relative motion of 
the slosh pendulum and nozzle will be measured relative 
to a frame of reference which moves with the system, as 
shown in Fig. 4. The flexural motion of the beam will be 
described in terms of the motion of the natural modes 
described in Sect. 11. Thus, the origin o and the I, z axes 
of the coordinate system 0x2 represent the center of mass 
and the principal axes of the system with the slosh 
pendulum and nozzle locked. 

In writing the equations of motion of the system, it 
will be necessary to consider the motion relative to an 
inertial frame of reference. The motion of the moving 
frame of reference will be considered relative to an 
Earth-fixed frame of reference, as shown in Fig. 5. The 

HORIZON 

i 

Fig. 5. Relationship of fixed and moving frames 
of reference o'x'z' and oxz 

fixed coordinate system o'x'x' will be considered to be 
inertial. The angles 0 and 8' are angles of elevation rela- 
tive to the local horizon. The motion of the moving coordi- 
nate system 0x2 is described by the position of the origin 
S, xt  and the rotation E = 0 - 8'. It will be considered 
that the motion in the z direction z:, and the angular 
motion E are small quantities. 

6. Kinetic Energy of the System 

Consider the translational velocity of an element of 
the beam relative to the fixed frame of reference (see 
Fig. 6). The velocity components referred to the moving 
coordinates are . .  v, = - xe + x:E + z; 

where terms no smaller than the product of small quan- 
tities are retained. In this equation, it is assumed that 
the elastic motion in the x direction resulting from 
bending of the beam may be neglected. The angular 
velocity of an element of the beam is given by e - wk. 

.--_- 
HORIZON 

Fig. 6. Motion of a beam element 

Similarly, the velocity components of the slosh mass 
and the nozzle center of mass are as follows: . .  v, = w (xN) - i,W; (xs) - (x, - is) e + i,s, + x;E + z; 

v., = 1, [a, - W; (XJI (e  + 8,)- m w : ,  + w (x,) e 
. .  

+ k  1 - -  - z ; E  ( z) ' 

5 
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In these equations, terms involving w& (xS) aB ( x s )  and 
W; (xN) t& ( x N ) ,  which represent elastic motion in the x 
direction resulting from beam bending, have been 
ignored. The angular velocity of the nozzle is given by 
I + b, - & ( X N ) .  

The kinetic energy of the system may be written in 
the form 

(10) T = $ /I: [ V; + V: + r2 (e' - P dx 

1 1 
2 + 2 on?, (V& + VLJ + - W N  (V&, + V;,) 

1 
2 + - (1, - mN4) [i + 8, - 6; ( x N ) I 2  

The mass of the vehicle and the moment of inertia around 
the origin o are defined as follows: 

c)n = 1 ; p d x  + Ws + WN 

Further, the following relations may be written: 

llm (x; + &;) p dx 

+ ms (xs - 1s) [; (xs) - 1s.;; (%)I  
+ W N  (XN - 1,) [G (XN) - ?&I (%)I 

+ ( I ,  - W N l i )  6; ( X N )  = 0 

The first two of these equations vanish, since the origin o 
is at the center of mass of the system with locked slosh 

pendulum and nozzle. The third equation represents the 
relative momentum in the z direction of the system with 
locked slosh pendulum and nozzle, and vanishes for the 
reason cited above. The fourth equation represents the 
relative angular momentum of the system with locked 
slosh pendulum and nozzle, and vanishes since the x, z 
axes are the principal axes. Making use of the definitions 
and equations above, the kinetic energy, Eq. (lo), may 
be re-written as follows: 

6 
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Then the following derivatives, which will appear in 
the Lagrange equations of motion for the system, may be 
written: / ‘  

Fig. 7. Motion of the origin o of the moving 
coordinate system 0x2 

It is well known that the acceleration of u consists of a 
component V along V and a component V$ normal to 
V and in the upward direction. Then 

..) * xo = v 
2: = va - v; .. ’ 

assuming a to be a small angle. 

C. Potential hergy  of the System 

the flexural potential energy in the beam is 

- ~ , + i  ( x ~ ) I  ai - (WS~SX, - 1,) 

- z Wsls+i (xs) ? h i  In terms of the displacements in bending and in shear, i 

i- mszs2; -t W,l,;ElS, 

- I N $ ’ i  ( X N ) ]  vi - ( ( ? ? ’ L ” ~ N ~ N  - I N )  e Making use of Eq. (ll), the flexural potential energy of 
the beam in terms of motion of the natural modes is - Z WJN+i ( x N )  %qi 

i 

In Eq. (13), the products of small quantities have been 
neglected. Further, E has been set equal to zero, requiring 
the fixed and moving coordinates to coincide at the instant 
represented by the equations. 

It is convenient to describe the acceleration of the 
moving origin in another form. The quantities which 
describe the motion of the origin 0, shown in Fig. 7, are 
defined as follows: 

V = velocity 

0 = angle of elevation 

a = angle of attack 

y = flight-path angle 

With the aid of Eq. (6), the second orthogonality rela- 
tionship, and of Eq. (7), the energy becomes 

The following derivative, which will appear in the 
Lagrange equations of motion for the system, may be 
written: 

7 
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IV. GENERALIZED FORCES 

The generalized forces contained in the Lagrange 
equations of motion are defined as the virtual work done 
on the system by the external forces per unit virtual dis- 
placement. It will be necessary to consider the thrust 
force, aerodynamic forces, gravitational forces, the nozzle 
actuating moment, and damping forces. 

A. Virtual Work 

The thrust force acts at the point of attachment of the 
nozzle and consists of a component T tangent to the beam 
and a component TSN normal to the beam, as shown in 
Fig. 8. The component Tax results from the small rotation 
of the nozzle aN. 

Consider the virtual work done by the thrust force 
in a flexural virtual displacement 6w ( x N )  of the point of 
attachment. It will be assumed here that the virtual work 
resulting from the tangential component T will be 
neglected. The effect of the above assumption is to ignore 
the buckling effect of a tangential compressive force on 
the beam, which is not likely to be important unless the 
vehicle acceleration is very high and the vehicle is very 
slender (Ref. 7). The virtual work done by the compo- 
nent TaN in an elastic virtual displacement Sw ( x N )  is 

6W = -TG,SW (xN) = - T 6 N  2 +i ( x N )  6qi 
i 

The virtual work done by the thrust force in a small 
virtual displacement of the moving origin o, given by 
ax;, 6z;, is 

6w = Tax; + T [wk ( X N )  - 6 N ]  62; 

= TSX; + T [I: +i (xN) qi - SNI 62: 
i 

Further, the virtual work done by the thrust force in a 
virtual rotation 68 is 

6W = T [W (xN) - X N W ~  (xN) + xNSN] 68 

6W = T { 2 [+i (xN) - xN+i ( x N ) 1  qi + 68 
z 

Consider the effect of the aerodynamic forces, repre- 
sented here by a drag force D and a lift force L in the 
negative x and z directions respectively. The drag and 

r\ I 

Fig. 8. Thrust-force components 

lift forces per unit length will be represented by D’ 
and L‘. Further the aerodynamic moment around the 
origin o will be represented by M, considered positive 
in the sense of positive 8. The virtual work done by the 
aerodynamic forces in an elastic virtual displacement 6w 
may be written as 

6W = - L‘6wdx I:’ 
= - 7 [ l; L’+i dx]  sqa 

NO virtual work will be done by the drag forces in 
an elastic virtual displacement consistent with the 
assumption that the elastic displacements in the r direc- 
tion are zero. The virtual work done by the aerodynamic 
forces in a virtual displacement of the moving origin o 
is as follows: 

where D and L are the total drag and lift forces. The 
virtual work done by the aerodynamic moment M in a 
virtual rotation is 

6W = M 6 8  

6W = - D ~ x :  - L ~ Z ;  

The virtual work done by the gravitational forces may 
be determined most easily by making use of previous 
results. Using D’Alembert’s principle, it may be expected 
that the gravitational forces per unit mass g sin e and 
g cos e will have the same effect as the inertial forces per 
unit mass 5; and -2;. The terms involving and -2: 
in Eq. (13) represent the negative of the virtual work 
done by these inertial forces per unit virtual displace- 
ment. Making use of Eq. (13), the virtual work done by 
the gravitational forces may be written as 

8 
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* The nozzle actuation moment M N  is the moment exerted 
by the beam on the nozzle and will be considered positive 
in the direction of positive nozzle rotation B N .  Because of 
the equal and opposite reaction on the beam, the virtual 
work done will vanish except for a virtual rotation of 
the nozzle. Thus the virtual work done by the nozzle 
actuation moment is 

SW = MN6 ( 6 , )  

Consider the effect of structural damping, slosh damping, 
and damping resulting from nozzle rotation. Aerody- 
namic damping effects are contained in the aerodynamic 
terms. If it is assumed that coupling of the elastic 
natural modes resulting from structural damping is 
negligible and, if the structural damping is represented 
in terms of an equivalent viscous damping, the virtual 
work done by structural damping may be written as 

In the above relation, the term ci represents the damp- 
ing ratio for the ith natural mode. Similarly the virtual 
work done by the slosh damping may be written as 

where C8 represents the damping ratio for slosh in a 1-g 
force field and (g/Zs)s represents the slosh natural fre- 
quency in the same condition. The virtual work done 
by the nozzle damping forces may be written as 

sw = - c N ~ N ~  (6,) 

where CN represents the viscous damping moment per 
unit rotational velocity of the nozzle. 

The virtual work done by all the forces considered 
may be obtained by summing all of the virtual work 
equations as follows: 

6. Generalized Forces 

tual work expression, Eq. (18), and are expressed as 
The generalized forces are the coefficients of the vir- 

+ [ T - D - (1126 sin e ]  Sxl, + +i (xN) 9i - T6N - L + ()ng cos 0 62; 1 

9 
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V. EQUATIONS OF 

A. Lagrange's Equations of Motion 

The Lagrange equations of motion for the system are 

Making use of Eq. (13), (14), (17), and (19) the equations 
of motion for the system become 

1 0  

FORCED MOTION 

B. Equations of forced Motion 

It is assumed that the motion of the system consists of 
the sum of a forced motion and an undisturbed or 
trimmed motion. The motion of the system is repre- 
sented by 

where the subscript T represents the trimmed motion 
and the bar represents the forced motion. I t  is further 
assumed that the trimmed motion varies slowly with time 
and is essentially constant. The aerodynamic forces and 
nozzle actuating moment are represented by 
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The trigonometric terms in the preceding equations may 
be expanded to 

- - 
sin ( 0 ,  + 6') = sin 0 ,  + 6' cos eT 
cos ( 0 ,  + 6') = cos 8 ,  - 0 sin OT 

- - 

assuming s' to be a small quantity. 

If the equations for trimmed motion are subtracted 
from the equations for total motion, the following equa- 
tions of forced motion result 

1 1  
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- QN,J~ (0, + g sin e T )  + i  (xs) S’i 
i 

+ C)ns‘& ( f T  f g sin e T )  ;S - + msl, ( C T ~  - v T f  + g sin e T e )  = 0 
.. .. 

z N E N  + 2 [ o n ? N z N $ i  ( x N )  - ‘ N $ i  (‘A’)] qi - .. - i 

- ( (&NlNXK - I>’) e + cN6A’ 

- 2 mNZX (OT + g sin $+ (%A’) qi 
i 

+ wNlN ( f T  + g sin e,) &,, - -  + mxly (e’~.’ - vT$ + gsin 6 T e )  - M ,  = o 

In Eq. (24), terms involving the products of forced-motion 
variables have been ignored. Further, since the trim 
variables q i T ,  LYT, SRT, and axT may be expected to be 
small quantities, the products of these variables and the 
forced-motion variables have been ignored. In addition 

to Eq. (24), equations are needed for the aerodynamic‘ 
forces and the nozzle actuating moment. The aerody- 
namic forces will be discussed in Sect. VI. The control- 
system equations needed to specify the nozzle actuating 
moment will not be discussed here. 

C. Forcing Conditions 
The equations of forced motion are suitable for an 

analysis of the forced motion resulting from disturbances 
involved in the launch and boosted flight of a rocket- 
boosted vehicle. For the important problems involving 
atmospheric motion such as gusts, turbulence, or wind 
shear, the forcing function would be contained in the 
aerodynamic lift and moment terms. For problems such 
as the determination of the forced motion resulting from 
a maneuver or a control-system malfunction, the forcing 
function would be contained in the nozzle actuating 
moment. Further, if the system is in motion at the instant 
of launch or stage separation, the resulting motion may 
be studied by considering the appropriate initial value 
problem. 

VI. AERODYNAMIC FORCES 

The momentum method will be used to determine the 
aerodynamic forces (Ref. 6, pp. 418-420). This method 
is applicable to small disturbances of slender vehicles at 
velocities up to low supersonic. The method is appro- 
priate for the boost period of large rocket-boosted vehi- 
cles, which are often slender and which typically do not 
experience velocities beyond low supersonic during that 
part of the boost period where aerodynamic forces are 
important. 

Consider an Earth-fixed frame of reference 0’ x’ z’ 
(shown in Fig. 5, Sect. IIIA). The frame of reference 
o’x’z’ is also considered to be at rest relative to the air 
mass. The motion of the moving origin is given by the 
coordinates xc and z: and the relative orientation by 
E = e - 8’. It is assumed that z: and E are small. 

The method to be used is based on the assumption 
that the disturbed air flow is two-dimensional in planes 

12 
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Sormal to the direction of flight. Consider the air con- 
tained in the volume bounded by the planes x’ and 
x‘ + dx’. It will be assumed that the disturbed 00w is in 
the x’ direction. The displacement of the beam in the Z’ 
direction at x’ is given by 

z’ == ,.‘ - uo E X  -t w 

where 

x = x’ - x: 

Thus, the velocity of the beam in the z’ direction at x’ is 

I I = & - E x -  E l ; . + & + W ’ 2  

i; = V ( a  - &) 

But 

r 1 

a 
(26) L’ = pV‘ 1- A‘a + (A+$)’qi 

[(Ax)’ + A] e’ - 2 [(A+i)’ + A&] ii} 
i 

In order to account for atmospheric motion such as gusts, 
turbulence, or wind shear, the quantity a will be replaced 
by a + am, where a, is the angle of attack resulting from 
atmospheric motion. 

The total lift L may be determined by integrating the 
lift per unit length L’ over the beam, as follows: 

+ pV { [ A  (x,) x p  - A (x,) x1 + 1; A dx]  4 

Making use of these equations, the velocity of the beam 
in the z’ direction at x‘ becomes 

2 = V ( a  - w’) - e’x + 4 

Assume that the momentum of the air contained in the 
differential volume may be written as 

dl,, = pAdx’[V (a - to’) - Ox + 63 
where pA represents the virtual mass per unit length of 
a cylinder having the same area and shape as the vehicle 
at the point considered. The force per unit length applied 
to the air mass will be equal to the time rate of change 
of the momentum per unit length. Thus, the lift per unit 
length applied to the vehicle may be written as 

(25) L ’ = - ( - )  d dl , .  
dt dx‘ 

= pV2 [-A’& + (Aw’)’] 

+ pV {[(Ax)’ + A ]  e’ - [(A&)’ + A&’]} .. + pA [ -V (e’ - 6) - x8 GI 

The last line of Eq. (25) represents the product of the 
virtual mass per unit length and the lateral acceleration 
of the vehicle. It will be assumed that the density of the 
air is small compared with the density of the vehicle and 
the last line of the equation will be ignored. If the elastic 
deflections are written in terms of the natural modes, 
Eq. (25) may be written as 

Similarly, the total moment M ,  positive in the 8 direc- 
tion, becomes 

(28) M = LIZ’ xL‘ dx 

Further, the following integral, which represents the 
generalized forces acting on the elastic motions, may be 
evaluated : 

(29) f”L’+i dx 
. 2, 

13 
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Equations (27), (28), and (29) may be used to determine 
the aerodynamic forces corresponding to the total motion, 
the sum of a forced motion and a trimmed motion, de- 
fined by Eq. (22). Similarly, the aerodynamic forces 
corresponding to the trimmed motion may be deter- 
mined. The difference between the total and trimmed 
aerodynamic forces represents the aerodynamic forces 
resulting from the forced motion. Thus, the aerodynamic 
forces appearing in the equations of forced motion, 
Eq. (24), may be written as follows: 

[A (x,) - A (x,)] (.’ + a,) 

r 

In Eq. (30), products involving the forced-motion 
variables v, Cy, qi, s, ii, and 3 and the trimmed variables 
aT, q i T ,  eT ,  qiT, and OT have been ignored. 

The aerodynamic forces are customarily expressed ih 
a form involving nondimensional coefficients. Define non- 
dimensional time T as 

where I ,  is a reference length. Then the aerodynamic 
quantities, Eq. (30), may be written as follows: 

where A, is a reference area and the aerodynamic 
coefficients are 

2 
A, 

A,  

(33) C L u  = - [A (xi) - A (x2)I 

CLPi = - 21r [A (x,) +; (4 - A (XI) +; (%,)I 

14 
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. Generally, some of the terms in the aerodynamic coeffi- 
cients, Eq. (33), are negligible. The terms involving the 
angle of attack (a + am) are usually important in all three 
equations in Eq. (32). The terms involving the pitch rate 
(del&) will usually be negligible except for the term in 
the moment equation. The terms involving the elastic 
motion will often be negligible, but may be important if 
the vehicle is sufficiently flexible. In the third equation, 
the terms involving coupling of the elastic modes, i # j ,  
are often unimportant. 

VII. NONDIMENSIONAL EQUATIONS 

It is usually convenient to nondimensionalize equations 
of motion involving aerodynamic forces. The equations 
for forced motion, Eq. (24), will be written in nondimen- 
sional form, making use of the equations for the aero- 
dynamic forces, Eq. (32). The nondimensional time T is 
defined by Eq. (31). The derivatives with respect to T 

will be designated by the operational notation 

d 
ds 

D = -  

d’ D2 = __ 
dr2 

The equations for forced motion may be written in the 
form The equation for forced longitudinal motion, the second 

equation of Eq. (24), has not been repeated in Eq. (34) 
since it is not needed in determining the flexural motion. 
The nondimensional coefficients are defined as follows: 

15 
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In Eq. (35), W,, A,, and I, are a reference mass, area, 
and length, respectively. 
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I ’  VIII. DISCUSSION 

The determination of the forced flexural motion of the 
vehicle under consideration requires the solution of 
the equations for forced motion of the system, Eq. (34). 
These coupled equations describe the motions of the 
natural modes of flexural vibrations of the vehicle, the 
translational and pitching motions of the vehicle, and 
the motions of the engine nozzle and liquid fuel. In addi- 
tion to the given equations, control-system equations are 
needed to specify the engine nozzle actuating moment. 

Given the solution for the motion of the generalized 
coordinates of flexural motion qi, the flexural displace- 
ments w and the rotations wk may be determined by 
summing the motions in all the natural flexural modes, as 
given by Eq. (11). With a complete knowledge of the 
flexural motion, the bending moments and shear forces 
in the vehicle may also be determined. 

I 
I 

Forcing conditions which may be considered include 
atmospheric motion such as gusts, turbulence, or wind 

shear, thrust-vectoring resulting from control-system com- 
mands or malfunctions, and an initial disturbance. The 
effect of atmospheric motion is contained in the term 
am, the angle of attack resulting from atmospheric motion. 
The effect of control-system commands is contained in 
the term GN, the nondimensional nozzle actuating 
moment. Ignition or separation transients may be treated 
as initial value problems. 

The natural modes and frequencies of flexural motion 
required in developing the equations of motion may be 
determined by any of the standard methods for the 
analysis of beam motion (Ref. 6, Chap. 4). Information 
needed for the approximate representation of the fuel 
motion by means of a simple pendulum is available 
in the literature (Ref. 5) .  The needed aerodynamic 
coefficients were developed in this Memorandum using 
the momentum method (Ref. 6, pp. 418-20). However, 
the coefficients may be determined experimentally or by 
another appropriate analytical method. 

1 7  
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damping coefficient, nozzle motion 

total drag, negative x direction 

drag per unit length, negative x direction 

flexural rigidity of beam 

moment of inertia, vehicle, around c.g. 

moment of inertia, nozzle, around hinge 

moment of inertia, slosh pendulum, around hinge 

shear rigidity of beam 

length, nozzle hinge to nozzle c.g. 

length, slosh pendulum 

reference length 

total lift, negative z direction 

lift per unit length, negative z direction 

mass of vehicle 

generalized mass, ith flexural mode 

mass, engine nozzle 

mass, slosh pendulum 

reference mass 

total aerodynamic moment, e direction 

nozzle actuating moment 

generalized coordinate, ith flexural mode 

generalized force, ith flexural mode 

generalized force, rigid-body motion, x direction 

generalized force, rigid-body motion, z direction 

generalized force, engine nozzle 

generalized force, slosh pendulum 

NOMENCLATURE 

generalized force, pitching motion 

radius of gyration of beam cross section around 
lateral axis 

thrust force 

speed of vehicle 

total deflection in flexure 

bending deflection 

shearing deflection 

location, aft end of vehicle 

location, forward end of vehicle 

location, nozzle hinge 

location, slosh pendulum hinge 

angle of attack 

angle of attack resulting from atmospheric motion 

trajectory angle above horizon 

deflection angle, engine nozzle 

deflection angle, slosh pendulum 

damping ratio, ith flexural mode 

damping ratio, slosh pendulum, 1-g force field 

elevation angle above horizon 

mass per unit length of beam 

air mass density 

air virtual mass per unit length 

V,t/l, ,  nondimensional time 

deflection shape, ith flexural mode 

bending slope shape, ith flexural mode 

natural frequency, ith flexural mode 

1 8  
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